These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclic guanosine monophosphate does not inhibit gonadotropin-induced activation of mitogen-activated protein kinase 3/1 in pig cumulus-oocyte complexes. Author: Blaha M, Nemcova L, Prochazka R. Journal: Reprod Biol Endocrinol; 2015 Jan 07; 13():1. PubMed ID: 25567742. Abstract: BACKGROUND: Recent results indicate a key role for cyclic guanosine monophosphate (cGMP) in the regulation of oocyte meiotic arrest in preovulatory mammalian follicles. The aim of our study was to determine whether the resumption of oocyte meiosis and expansion of cumulus cells in isolated pig cumulus-oocyte complexes (COCs) can be blocked by a high intracellular concentration of cGMP, and whether this effect is mediated by a cGMP-dependent inhibition of mitogen-activated protein kinase 3/1 (MAPK3/1). METHODS: The COCs were isolated from ovaries of slaughtered gilts and cultured in vitro in M199 supplemented with 5% fetal calf serum. The expression levels of the C-type natriuretic peptide (CNP) precursor (NPPC) and its receptor (NPR2) mRNAs during the culture of COCs were determined by real-time RT-PCR. To control the intracellular concentration of cGMP in the COCs, the culture medium was further supplemented with CNP or various concentrations of synthetic cGMP analogues; the concentration of cGMP in COCs was then assessed by ELISA. The effect of the drugs on oocyte maturation was assessed after 24 and 44 h of culture by determining nuclear maturation. The expansion of cumulus cells was assessed by light microscopy and the expression of cumulus expansion-related genes by real-time RT-PCR. A possible effect of cGMP on FSH-induced activation of MAPK3/1 was assessed by immunoblotting the COC proteins with phospho-specific and total anti-Erk1/2 antibodies. RESULTS: The COCs expressed NPPC and NPR2, the key components of cGMP synthesis, and produced a large amount of cGMP upon stimulation with exogenous CNP, which lead to a significant (P < 0.05) delay in oocyte meiotic resumption. The COCs also responded to cGMP analogues by inhibiting the resumption of oocyte meiosis. The inhibitory effect of cGMP on meiotic resumption was reversed by stimulating the COCs with FSH. However, high concentration of intracellular cGMP was not able to suppress FSH-induced activation of MAPK3/1 in cumulus cells, cumulus expansion and expression of expansion-related genes (P > 0.05). CONCLUSIONS: The findings of this study indicate that high cGMP concentrations inhibit the maturation of pig oocytes in vitro but the inhibitory mechanism does not involve the suppression of MAPK3/1 activation in cumulus cells.[Abstract] [Full Text] [Related] [New Search]