These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of caldesmon on dynamic properties of F-actin alone and bound to heavy meromyosin and/or tropomyosin. Author: Gałazkiewicz B, Belágyi J, Dabrowska R. Journal: Eur J Biochem; 1989 Dec 08; 186(1-2):233-8. PubMed ID: 2557208. Abstract: The effect of caldesmon on the rotational dynamics of actin filaments alone or conjugated with heavy meromyosin and/or tropomyosin has been measured by the electron paramagnetic resonance (EPR) technique using a maleimide spin label rigidly bound to Cys374 of actin. The rotation of actin protomers in filaments and the angular distribution of spin probes on actin were determined by conventional EPR spectroscopy, while torsional motions within actin filaments were detected by saturation transfer EPR measurements. Binding of caldesmon to F-actin resulted in the reduction of torsional mobility of actin filaments. The maximum effect was produced at a ratio of about one molecule of caldesmon/seven actin protomers. Smooth muscle tropomyosin enhanced the effect of caldesmon, i.e. caused further slowing down of internal motions within actin filaments. Caldesmon increased the degree of order of spin labels on F-actin in macroscopically oriented pellets in the presence of tropomyosin but not in its absence. Computer analysis of the spectra revealed that caldesmon alone slightly changed the orientation of spin probes relative to the long axis of the filament. In the presence of tropomyosin this effect of caldesmon was potentiated and then approximately every twentieth protomer along the actin filament was affected. Caldesmon weakened the effect of heavy meromyosin both on the polarity of environment of the spin label attached to F-actin and on the degree of order of labels on actin in macroscopically oriented pellets. Whereas the former effect of caldesmon was independent of tropomyosin, the latter one was observed only in the absence of tropomyosin.[Abstract] [Full Text] [Related] [New Search]