These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NO levels in diabetes mellitus: Effects of l-NAME and insulin on LCAT, Na(+)/K(+) ATPase activity and lipid profile.
    Author: Tekin N, Akyüz F, Temel HE.
    Journal: Diabetes Metab Syndr; 2011; 5(4):191-5. PubMed ID: 25572761.
    Abstract:
    OBJECTIVES: Diabetes mellitus (DM) is a chronic disease and one of the most important health problems. Several factors may be responsible for the complications of diabetes mellitus including alterations in the activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+) ATPase) and lecithin:cholesterol acyltransferase (LCAT) and also levels of nitric oxide (NO). We have investigated the effects of alterations in serum NO levels on activities of erythrocyte membran Na/K ATPase and serum LCAT enzymes. MATERIALS AND METHODS: The experiments were performed on male rats divided into four groups: group 1, control (standart diet); group 2, diabetic control (single dose of 65mg/kg of streptozotocin (STZ), i.p); group 3, STZ+insulin (8IU/kg/day s.c.); group 4 (STZ+l-NAME 5mg/kg/day orally). RESULT: Streptozotocin-induced diabetic rats, showed a significant increase in blood glucose and serum cholesterol (C) and triglyceride (TG). Compared to the control group with diabetic group plasma LCAT concentrations and erythrocyte membrane Na(+)/K(+) ATPase were found to be decreased. Activities of Na(+)/K(+) ATPase and serum NO level were decreased with the administration of l-NAME. We observed that insulin was ameliorated in all parameters. CONCLUSIONS: Serum NO levels is related to erythrocyte membrane Na(+)/K(+) ATPase activity. But serum NO levels did not affect the plasma LCAT activity and serum lipid profiles.
    [Abstract] [Full Text] [Related] [New Search]