These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neutrophil degranulation inhibits potential hydroxyl-radical formation. Relative impact of myeloperoxidase and lactoferrin release on hydroxyl-radical production by iron-supplemented neutrophils assessed by spin-trapping techniques. Author: Britigan BE, Hassett DJ, Rosen GM, Hamill DR, Cohen MS. Journal: Biochem J; 1989 Dec 01; 264(2):447-55. PubMed ID: 2557840. Abstract: Hydroxyl radical (.OH) formation by neutrophils in vitro requires exogenous iron. Two recent studies [Britigan, Rosen, Thompson, Chai & Cohen (1986) J. Biol. Chem. 261, 17026-17032; Winterbourn (1987) J. Clin. Invest. 78, 545-550] both reported that neutrophil degranulation could potentially inhibit the formation of .OH, but differed in their conclusions as to the responsible factor, myeloperoxidase (MPO) or lactoferrin (LF). By using a previously developed spin-trapping system which allows specific on-line detection of superoxide anion (O2-) and .OH production, the impact of MPO and LF release on neutrophil .OH production was compared. When iron-diethylenetriaminepenta-acetic acid-supplemented neutrophils were stimulated with phorbol myristate acetate or opsonized zymosan, .OH formation occurred, but terminated prematurely in spite of continued O2- generation. Inhibition of MPO by azide increased the magnitude, but not the duration, of .OH formation. No azide effect was noted when MPO-deficient neutrophils were used. Anti-LF antibody increased both the magnitude and duration of .OH generation. Pretreatment of neutrophils with cytochalasin B to prevent phagosome formation did not alter the relative impact of azide or anti-LF on neutrophil .OH production. An effect of azide or anti-LF on spin-trapped-adduct stability was eliminated as a confounding factor. These data indicate that neutrophils possess two mechanisms for limiting .OH production. Implications for neutrophil-derived oxidant damage are discussed.[Abstract] [Full Text] [Related] [New Search]