These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activity of 17 beta-hydroxysteroid oxidoreductase in tissues of the human fetus. Author: Milewich L, MacDonald PC, Carr BR. Journal: J Endocrinol; 1989 Dec; 123(3):509-18. PubMed ID: 2558148. Abstract: The interconversion of oestrone and oestradiol, androstenedione and testosterone, and dehydroepiandrosterone and 5-androstene-3 beta,17 beta-diol in mammalian tissues is catalysed by 17 beta-hydroxysteroid oxidoreductase (17 beta-HSOR). To identify tissue sites of 17 beta-HSOR activity in the human fetus, microsomal fractions from 15 different fetal tissues obtained from first and second trimester pregnancies were used for evaluation of enzymatic activity by use of [17 alpha-3H] oestradiol as the substrate and NADP+ as the co-factor. With these reagents, the enzyme-catalysed reaction led to the production of both non-radiolabelled oestrone and NADP3H in equimolar amounts; the radioactivity associated with NADP3H was used to quantify 17 beta-HSOR activity. Activity of 17 beta-HSOR was present in microsomes of all the tissues evaluated. The specific activity of the enzyme was highest in liver and placental microsomes. The interconversion of oestradiol and oestrone in microsomal fractions of nine different fetal tissues was studied by the use of substrates labelled with tritium at stable nuclear positions ([6,7-3H]oestradiol and [6,7-3H]oestrone). The products, [3H]oestrone and [3H]oestradiol, were quantified by the use of established techniques; other metabolites formed in these incubations were not identified. The reductive pathway of metabolism (oestrone to oestradiol) appeared to be favoured in microsomal fractions prepared from placenta, fetal zone of the adrenal gland and, possibly, lung. The oxidative pathway (oestradiol to oestrone) appeared to be favoured in microsomes prepared from liver, intestine, stomach, kidney, brain and heart. 17 beta-HSOR activity in fetal liver also was assessed by the use of fresh and frozen-thawed tissue, homogenate, subcellular fractions, and, also, in primary hepatocytes maintained in culture; the specific activity of the enzyme was highest in the microsomal fraction of liver tissue and 17 beta-HSOR activity in liver microsomes was linear with time of incubation up to 1 h. In hepatocytes, the enzymatic activity was linear with time of incubation up to 2 h and with cell number up to 2.5 x 10(5) cells/ml; the apparent Michaelis constant of hepatocyte 17 beta-HSOR for oestradiol was 11 mumol/l. The specific activity of 17 beta-HSOR did not change after pretreatment of hepatocytes for 24 h with insulin, glucagon or dexamethasone.[Abstract] [Full Text] [Related] [New Search]