These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Erythropoietin pretreatment ameliorates renal ischaemia-reperfusion injury by activating PI3K/Akt signalling.
    Author: Zhang J, Zou YR, Zhong X, Deng HD, Pu L, Peng K, Wang L.
    Journal: Nephrology (Carlton); 2015 Apr; 20(4):266-72. PubMed ID: 25581532.
    Abstract:
    AIM: Renal ischaemia-reperfusion (I/R) injury, a primary cause of acute renal failure, can induce high morbidity and mortality. This study aimed to explore the effect of erythropoietin on renal I/R injury and its underlying mechanism. METHODS: Fifty male Sprague-Dawley rats were randomly allocated to three groups (n = 10): the sham group, the renal ischaemia-reperfusion-saline (IRI) group, and the IRI+-Erythropoietin (EPO) group. Erythropoietin (250, 500, 1000 U/kg) was intraperitoneally injected 30 min before inducing I/R. Renal I/R injury were induced by clamping the left renal artery for 30 min followed by reperfusion, along with a contralateral nephrectomy. Renal function and histological damage were determined after 24 h reperfusion. The expression of pro-inflammatory cytokines interleukin-6 (IL-6), interleukin-1 β (IL-1β), and tumour necrosis factor-α (TNF-α) in the serum and renal tissue were evaluated by enzyme linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Further, the effects of erythropoietin on PI3K/Akt signalling, erythropoietin receptor (EPOR) and nuclear factor (NF)-κB activation were measured by Western blotting. RESULTS: Erythropoietin pretreatment can significantly decrease the level of renal dysfunction in a dose-dependent manner, attenuated the renal histological changes, the expression of TNF-α, IL-1β, and IL-6, the levels of reactive oxygen species (ROS) production and NF-κB p65 phosphorylation in renal tissue upon IRI. Moreover, erythropoietin pretreatment could further activate the PI3K/Akt signalling and induced EPOR activity. CONCLUSIONS: Erythropoietin pretreatment could attenuate renal I/R injury by suppressing inflammation, which was associated with activating PI3K/Akt signalling though EPOR activation. Our findings suggest that erythropoietin may be a novel practical strategy to prevent renal I/R injury.
    [Abstract] [Full Text] [Related] [New Search]