These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular identification and characterization of Trichinella spiralis proteasome subunit beta type-7.
    Author: Yang W, Li LG, Liu RD, Sun GG, Liu CY, Zhang SB, Jiang P, Zhang X, Ren HJ, Wang ZQ, Cui J.
    Journal: Parasit Vectors; 2015 Jan 13; 8():18. PubMed ID: 25582125.
    Abstract:
    BACKGROUND: Previous study showed that Trichinella spiralis proteasome subunit beta type-7 (Tspst) gene is an up-regulated gene in intestinal infective larvae (IIL) compared to muscle larvae (ML), which was screened by using suppression subtractive hybridization (SSH) and confirmed by real-time PCR. Tspst may be related to the larval invasion of intestinal epithelial cells (IECs). The aim of this study was to identify Tspst and to investigate its immune protection against intestinal T. spiralis infection. METHODS: The Tspst gene encoding a 29 kDa protein from T. spiralis infective larvae was cloned, and recombinant Tspst protein (rTspst) was produced in an Escherichia coli expression system. The rTspst was used to immunize BALB/c mice. Anti-rTspst antibodies were used to determine the immunolocolization of Tspst in the parasite. Transcription and expression of Tspst at T. spiralis different developmental stages were observed by RT-PCR and immunofluorescence test (IFT). The in vitro or in vivo immune protection of anti-rTspst serum or rTspst against intestinal T. spiralis infection in BALB/c mice was evaluated. RESULTS: Anti-rTspst serum recognized the native Tspst protein with 29 kDa in ML crude antigens. Transcription and expression of gene was observed at all T. spiralis different developmental stages (IIL, adult worms, newborn larvae, and ML). An immunolocalization analysis identified Tspst in the cuticle and internal organs of the parasite. An in vitro invasion assay showed that, when anti-rTspst serum, serum of mice infected with T. spiralis or normal mouse serum were added to the medium, the invasion rate of the infective larvae in an IEC monolayer was 25.2%, 11.4%, and 79%, respectively (P < 0.05), indicating that anti-rTspst serum partially prevented the larval invasion of IECs. After a challenge infection with T. spiralis muscle larvae, mice immunized with rTspst conferred a 45.7% reduction in adult worm burden in intestines. CONCLUSIONS: In the present study, Tspst was first identified and characterized. Tspst is an invasion-related protein of T. spiralis IIL and could be considered as a potential vaccine candidate antigen against intestinal T. spiralis infection that merits further study.
    [Abstract] [Full Text] [Related] [New Search]