These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Blockade of Notch Signalling by γ-Secretase Inhibitor in Lung T Cells of Asthmatic Mice Affects T Cell Differentiation and Pulmonary Inflammation.
    Author: Zhou M, Cui ZL, Guo XJ, Ren LP, Yang M, Fan ZW, Han RC, Xu WG.
    Journal: Inflammation; 2015; 38(3):1281-8. PubMed ID: 25586485.
    Abstract:
    Notch is a single-pass transmembrane receptor protein expressed by T cells, which contributes to the pathogenesis of asthma through regulation of the development and differentiation of T cells. γ-Secretase inhibitor (GSI) acts as an effective blocker of Notch signalling. The present study aimed to investigate the role of GSI MW167 in T cell differentiation and antigen-induced airway inflammation. An OVA-induced airway inflammation mouse model was established. Blockade of Notch signalling was achieved using MW167. The expression of IL-4, IL-5, IFN-γ, Notch1 signalling and pro-inflammatory transcription factors in activated lung T cells was evaluated. Finally, the therapeutic effect of MW167 was investigated by haematoxylin and eosin staining, real-time PCR and ELISA. The expression of IL-4 and IL-5 decreased and that of IFN-γ increased significantly, and the protein expression levels of pro-inflammatory transcription factors reduced in active lung T cells after administration of MW167, compared to the control group. MW167 treatment prevented OVA-induced airway inflammation and histological changes. The serum and bronchoalveolar lavage fluid (BALF) levels of IL-4 and IL-5 in MW167-treated mice decreased significantly, whereas those of IFN-γ increased, relative to the levels in OVA-challenged animals treated with PBS. Our findings indicate that Notch signalling plays an important role in the pathogenesis of asthma and that MW167 may be a potential therapeutic target for allergen-induced airway inflammation.
    [Abstract] [Full Text] [Related] [New Search]