These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NADH→NAD⁺ Transhydrogenation in Adult Ascaris suum Mitochondria. Author: Holowiecki A, Fioravanti CF. Journal: J Parasitol; 2015 Jun; 101(3):358-63. PubMed ID: 25587625. Abstract: Although lacking an NADPH→NAD(+) transhydrogenase system, the essentially energetically anaerobic mitochondria of the adult intestinal nematode Ascaris suum display an inner membrane-associated NADH→NAD(+) transhydrogenation reaction. This reaction is considered to be reflective of a mechanism(s) that acts in catalyzing a transmembrane translocation of reducing equivalents from NADH in the intermembrane space to matrix NAD(+), thereby forming matrix NADH that would serve in electron transport. Ascarid mitochondrial lipoamide dehydrogenase rather than an NADH→NAD(+) transhydrogenase system has been viewed as the predominant source of inner membrane-associated NADH→NAD(+) transhydrogenation activity. However, the present study made apparent yet another source of mitochondrial, inner membrane-associated NADH→NAD(+) activity in A. suum , viz., NADH dehydrogenase. This was made evident via comparisons of the A. suum mitochondrial NADH→NAD(+) transhydrogenation, NADH dehydrogenase, and lipoamide dehydrogenase activities in terms of pH effects, thermal labilities, the involvement of NADH dehydrogenase in the activities of mitochondrial, membrane-associated rotenone-insensitive and rotenone-sensitive NADH-dependent cytochrome c reductases, and mitochondrial membrane versus mitochondrial soluble localizations. Studies of the responses of the NADH→NAD(+) transhydrogenation, rotenone-insensitive and rotenone-sensitive cytochrome c reductases, and lipoamide dehydrogenase activities to inhibition by copper and cadmium lent additional support to the catalysis of an NADH→NAD(+) transhydrogenation activity by NADH dehydrogenase. Collectively, the data presented are consistent with an additional physiological catalysis of an NADH→NAD(+) transhydrogenation in A. suum mitochondria by an inner membrane NADH dehydrogenase component of the rotenone-sensitive cytochrome c reductase system, i.e., the NADH dehydrogenase component of the electron transport system. Comparisons of the A. suum data with those from other essentially anaerobic helminth parasites as well as free-living eukaryotic mitochondrial systems are noted.[Abstract] [Full Text] [Related] [New Search]