These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Voltage-dependent potassium channels in mouse Schwann cells. Author: Konishi T. Journal: J Physiol; 1989 Apr; 411():115-30. PubMed ID: 2559192. Abstract: 1. Ionic currents in Schwann cells cultured from enzymatically dissociated sciatic nerves of newborn mice were recorded by the whole-cell variation of the patch-clamp technique. 2. In these cells only the voltage-dependent K+ currents were recorded. The K+ current was suppressed by quinine, 4-aminopyridine (4-AP) or tetraethylammonium (TEA), their half-suppression concentrations being 22 microM, 0.3 mM and 15 mM, respectively. 3. The peak amplitudes and density of the K+ currents in these Schwann cells increased rapidly during the first 2 days of the culture. 4. In an investigation of the linkage between K+ channels and Schwann cell proliferation, three different K+ channel blockers (quinine, 4-AP and TEA) were added to the medium at different stages of the culture. In media containing sublethal doses of quinine or 4-AP, the start of cell proliferation was delayed when these drugs were added at 12 h or on day 3. The same doses of these drugs applied on day 6, when the Schwann cells were proliferating, did not affect cell proliferation. TEA showed a discrepancy between the dose-dependent blocking of K+ channels and cell proliferation because of its additional cytotoxic effects. 5. It is concluded that voltage-dependent K+ channels in mouse Schwann cells are similar to those observed in human and murine T lymphocytes. These K+ channels are suggested to be involved in Schwann cell proliferation at early stages of development.[Abstract] [Full Text] [Related] [New Search]