These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine.
    Author: Saugel B, Cecconi M, Wagner JY, Reuter DA.
    Journal: Br J Anaesth; 2015 Apr; 114(4):562-75. PubMed ID: 25596280.
    Abstract:
    The determination of blood flow, i.e. cardiac output, is an integral part of haemodynamic monitoring. This is a review on noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. We present the underlying principles and validation data of the following technologies: thoracic electrical bioimpedance, thoracic bioreactance, vascular unloading technique, pulse wave transit time, and radial artery applanation tonometry. According to clinical studies, these technologies are capable of providing cardiac output readings noninvasively and continuously. They, therefore, might prove to be innovative tools for the assessment of advanced haemodynamic variables at the bedside. However, for most technologies there are conflicting data regarding the measurement performance in comparison with reference methods for cardiac output assessment. In addition, each of the reviewed technology has its own limitations regarding applicability in the clinical setting. In validation studies comparing cardiac output measurements using these noninvasive technologies in comparison with a criterion standard method, it is crucial to correctly apply statistical methods for the assessment of a technology's accuracy, precision, and trending capability. Uniform definitions for 'clinically acceptable agreement' between innovative noninvasive cardiac output monitoring systems and criterion standard methods are currently missing. Further research must aim to further develop the different technologies for noninvasive continuous cardiac output determination with regard to signal recording, signal processing, and clinical applicability.
    [Abstract] [Full Text] [Related] [New Search]