These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase from Saccharomyces cerevisiae. Author: Hofmann E, Bedri A, Kessler R, Kretschmer M, Schellenberger W. Journal: Adv Enzyme Regul; 1989; 28():283-306. PubMed ID: 2560327. Abstract: In permeabilized yeast cells 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase are studied during growth. It is shown that in yeast at least two fructose 2,6-bisphosphate degrading enzyme activities occur, differing in pH profile and in their substrate affinities. The activities of 6-phosphofructo-2-kinase and of fructose-2,6-bisphosphatases drop in the exponential and the transition phase while the activity of the alkaline phosphatases steadily increases. In the stationary phase the activities of 6-phosphofructo-2-kinase and of the low Km fructose-2,6-bisphosphatase increase again. Yeast 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase were purified and separated from each other. The purified 6-phosphofructo-2-kinase was found to exhibit a very high specific activity (1.3 U/mg). The enzyme is efficiently inhibited by ATP. The ATP inhibition is most pronounced at low concentrations of magnesium and fructose-6-phosphate. Phosphoenolpyruvate and sn-glycerol 3-phosphate are inhibitors of the enzyme. The high-affinity yeast fructose-2,6-bisphosphatase releases inorganic phosphate from the 2-position of fructose 2,6-bisphosphate. It displays hyperbolic kinetics towards fructose 2,6-bisphosphate (Km = 0.3 microM) and is strongly inhibited by fructose 6-phosphate. The inhibition is counteracted by sn-glycerol 3-phosphate. The enzyme is shown to be inactivated by cAMP-dependent phosphorylation and reactivated by the action of protein phosphatase 2A.[Abstract] [Full Text] [Related] [New Search]