These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Feasibility of noninvasive fetal electrocardiographic monitoring in a clinical setting. Author: Arya B, Govindan R, Krishnan A, Duplessis A, Donofrio MT. Journal: Pediatr Cardiol; 2015 Jun; 36(5):1042-9. PubMed ID: 25608698. Abstract: Cardiac rhythm is an essential component of fetal cardiac evaluation. The Monica AN24 is a fetal heart rate monitor that may provide a quick, inexpensive modality for obtaining a noninvasive fetal electrocardiogram (fECG) in a clinical setting. The fECG device has the ability to acquire fECG signals and allow calculation of fetal cardiac time intervals between 16- and 42-week gestational age (GA). We aimed to demonstrate the feasibility of fECG acquisition in a busy fetal cardiology clinic using the Monica fetal heart rate monitor. This is a prospective observational pilot study of fECG acquired from fetuses referred for fetal echocardiography. Recordings were performed for 5-15 min. Maternal signals were attenuated and fECG averaged. fECG and fetal cardiac time intervals (PR, QRS, RR, and QT) were evaluated by two cardiologists independently and inter-observer reliability was assessed using intraclass coefficient (ICC). Sixty fECGs were collected from 50 mothers (mean GA 28.1 ± 6.1). Adequate signal-averaged waveforms were obtained in 20 studies with 259 cardiac cycles. Waveforms could not be obtained between 26 and 30 weeks. Fetal cardiac time intervals were measured and were reproducible for PR (ICC = 0.89; CI 0.77-0.94), QRS (ICC = 0.79; CI 0.51-0.91), and RR (ICC = 0.77; CI 0.53-0.88). QT ICC was poor due to suboptimal T-wave tracings. Acquisition of fECG and measurement of fetal cardiac time intervals is feasible in a clinical setting between 19- and 42-week GA, though tracings are difficult to obtain, especially between 26 and 30 weeks. There was high reliability in fetal cardiac time intervals measurements, except for QT. The device may be useful for assessing atrioventricular/intraventricular conduction in fetuses from 20 to 26 and >30 weeks. Techniques to improve signal acquisition, namely T-wave amplification, are ongoing.[Abstract] [Full Text] [Related] [New Search]