These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Clinical value of genome-wide high resolution chromosomal microarray analysis in etiological study of fetuses with congenital heart defects].
    Author: Wu X, Fu F, Li R, Pan M, Han J, Zhen L, Yang X, Zhang Y, Li F, Liao C.
    Journal: Zhonghua Fu Chan Ke Za Zhi; 2014 Dec; 49(12):893-8. PubMed ID: 25608988.
    Abstract:
    OBJECTIVE: To explore the clinical value of genome-wide high resolution chromosomal microarray analysis (CMA) in etiological study of fetuses with congenital heart disease (CHD) diagnosed by fetal echocardiography. METHODS: A total of 176 fetuses diagnosed CHD by fetal echocardiography were analyzed, and invasive prenatal diagnosis was performed at Guangzhou Women and Children's Medical Center from January 2012 to January 2014. Among them, 158 fetuses were proved to have normal karyotype, and 88 fetuses (50.0%, 88/176) underwent CMA testing. The parental blood specimens were also collected for assisting the diagnosis of variants of uncertain clinical significance (VOUS). The 88 fetuses were divided into two groups: isolated CHD (n = 68) and CHD with extra-cardiac structural abnormalities (n = 20). The phenotypes of the two groups were subclassified. Copy number variations (CNV) were classified as benign CNV, pathogenic CNV (pCNV) or VOUS. RESULTS: (1) 58 fetuses (66%, 58/88) were with simple CHD and 30 fetuses were with complicated CHD (34%, 30/88). In the 45 fetuses with isolated and simple CHD, the pCNV detection rate was 11% (5/45). In the 23 fetuses with isolated and complicated CHD, the pCNV detection rate was 17% (4/23). In the 13 fetuses with simple CHD and extra-cardiac structural abnormalities, the pCNV detection rate was 5/13. In the 7 fetuses with complicated CHD and extra-cardiac structural abnormalities, the pCNV detection rate was 0. (2) The total detection rate for pCNV detection was 16% (14/88) in the 88 fetuses. The pCNV detection rates for isolated CHD and CHD with extra-cardiac structural abnormalities were 13% (9/68) and 25% (5/20), respectively (P > 0.05). The pCNV detection rates for simple and complicated CHD were 17% (10/58) and 13% (4/30), respectively (P > 0.05). (3) Eighteen fetuses (10.2%, 18/176) had abnormal karyotype results. (4) CMA test was performed in 88 fetuses. CNV detected in 8 fetuses were classified as VOUS initially. After parental microarray analysis, CNV in 5 fetuses were inherited and interpreted as benign. CNV in the other 3 fetuses (3%, 3/88) were remained unknown significance. CNV in 14 fetuses (16% ) were interpreted as pCNV. CONCLUSIONS: In fetuses with CHD and normal karyotype, the application of CMA could increase the detection rate of pCNV. Genome-wide CMA could be used as a regular tool in the prenatal diagnosis of fetuses with CHD and normal karyotype. This technology may benefit evaluation of fetal prognosis in prenatal genetic counselling.
    [Abstract] [Full Text] [Related] [New Search]