These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Charge and charge-pair mutations alter the rate of assembly and structural properties of apolipoprotein C-II amyloid fibrils.
    Author: Mao Y, Teoh CL, Yang S, Zlatic CO, Rosenes ZK, Gooley PR, Howlett GJ, Griffin MD.
    Journal: Biochemistry; 2015 Feb 17; 54(6):1421-8. PubMed ID: 25609257.
    Abstract:
    The misfolding, aggregation, and accumulation of proteins as amyloid fibrils is a defining characteristic of several debilitating diseases. Human apolipoprotein C-II (apoC-II) amyloid fibrils are representative of the fibrils formed by a number of plasma apolipoproteins implicated in amyloid-related disease. Previous structural analyses identified a buried charge pair between residues K30 and D69 within apoC-II amyloid fibrils. We have investigated the effects of amino acid substitutions of these residues on apoC-II fibril formation. Two point mutations of apoC-II, D69K and K30D, as well as a reversed ion-pair mutant containing both mutations (KDDK) were generated. Fibril formation by the double mutant, apoC-II KDDK, and apoC-II D69K was enhanced compared to that of wild-type (WT) apoC-II, while apoC-II K30D lacked the ability to form fibrils under standard conditions. Structural analyses showed that WT apoC-II, apoC-II D69K, and apoC-II KDDK fibrils have similar secondary structures and morphologies. Size distribution analyses revealed that apoC-II D69K fibrils have a broader range of fibril sizes while apoC-II KDDK fibrils showed an increased frequency of closed fibrillar loops. ApoC-II D69K fibrils exhibited reduced thioflavin T binding capacity compared to that of fibrils formed by WT apoC-II and apoC-II KDDK. These results indicate that specific charge and charge-pair mutations within apoC-II significantly alter the ability to form fibrils and that position 69 within apoC-II plays a key role in the rate-limiting step of apoC-II fibril formation.
    [Abstract] [Full Text] [Related] [New Search]