These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: GM3 and cancer. Author: Hakomori SI, Handa K. Journal: Glycoconj J; 2015 Feb; 32(1-2):1-8. PubMed ID: 25613425. Abstract: Our studies during the early 1970s showed that expression of GM3, the simplest ganglioside and an abundant animal cell membrane component, is reduced during malignant transformation of cells by oncogenic viruses. Levels of mRNA for GM3 synthase were reduced in avian and mammalian cells transformed by oncoprotein "v-Jun", and overexpression of GM3 synthase in the transformed cells caused reversion from transformed to normal cell-like phenotype. GM3 has a well-documented inhibitory effect on activation of growth factor receptors (GFRs), particularly epidermal GFR (EGFR). De-N-acetyl GM3, which is expressed in some invasive human cancer cells, has an enhancing effect on EGFR activation. The important role of the sialosyl group of GM3 was demonstrated using NEU3, a plasma membrane-associated sialidase that selectively remove sialic acids from gangliosides GM3 and GD1a and is up-regulated in many human cancer cells. GM3 is highly enriched in a type of membrane microdomain termed "glycosynapse", and forms complexes with co-localized cell signaling molecules, including Src family kinases, certain tetraspanins (e.g., CD9, CD81, CD82), integrins, and GFRs (e.g., fibroblast growth factor receptor and hepatocyte growth factor receptor c-Met). Studies by our group and others indicate that GM3 modulates cell adhesion, growth, and motility by altering molecular organization in glycosynaptic microdomains and the activation levels of co-localized signaling molecules that are involved in cancer pathogenesis.[Abstract] [Full Text] [Related] [New Search]