These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel dispersive micro solid phase extraction using PCX as the sorbent for the determination of melamine and cyromazine in milk and milk powder by UHPLC-HRMS/MS. Author: Chen D, Zhao Y, Miao H, Wu Y. Journal: Talanta; 2015 Mar; 134():144-152. PubMed ID: 25618651. Abstract: A novel dispersive micro solid phase extraction (DMSPE) cleanup method based on the PCX sorbent (a kind of cation exchange polymer material) was applied to the analysis of melamine and cyromazine residues in milk and milk powder, and ultra high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used as instrument detection. Milk powder samples were first extracted with 1% formic acid in acetonitrile/water (1:1 v/v), and milk samples were cleaned up directly without any pre-extraction. Then, melamine and cyromazine in the extracts or milk were adsorbed to the PCX powder. Subsequently, the analytes in PCX sorbent were eluted with ammonium hydroxide/acetonitrile (2.5:97.5 v/v) through a simple unit device equipped with 1 mL syringe and 0.22 μm nylon syringe filter. All the samples were analyzed by UHPLC-HRMS/MS on a Waters Acquity BEH HILIC column with 0.1% formic acid and 4mM ammonium formate in water/acetonitrile as the mobile phase with gradient elution. The matrix effect, recovery, and repeatability, within laboratory reproducibility, CCα and CCβ of the DMSPE cleanup method were investigated. The proposed method provided a significant improvement for the determination of melamine and cyromazine in milk and milk powder in terms of efficient, rapid, economical, and miniaturized sample preparation methods, which yielded fewer matrix effects compared with SPE method. The established cleanup method is expected to be widely applied for the sample preparation of alkaline contaminants at trace levels in the future.[Abstract] [Full Text] [Related] [New Search]