These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Projections of the nucleus of the optic tract to the nucleus reticularis tegmenti pontis and prepositus hypoglossi nucleus in the pigmented rat as demonstrated by anterograde and retrograde transport methods. Author: Korp BG, Blanks RH, Torigoe Y. Journal: Vis Neurosci; 1989; 2(3):275-86. PubMed ID: 2562149. Abstract: The visual pathways from the nucleus of the optic tract (NOT) to the nucleus reticularis tegmenti pontis (NRTP) and prepositus hypoglossi nucleus (ph) were studied following injections of tritiated leucine into the NOT of pigmented rats. The cell bodies of origin of the pretectal-NRTP, NRTP-ph, and pretectal-ph projections were determined using retrograde horseradish peroxidase (HRP) technique. The pretectum projects strongly to the rostral two-thirds of the central and pericentral subdivisions of the NRTP and sends a remarkably smaller projection to the ph. Both are entirely ipsilateral. The fibers destined for the ph travel with the NOT-NRTP bundle, pass through the NRTP, traverse the medial longitudinal fasciculus, and are distributed to the rostral one-half of the ph. The retrograde HRP studies confirm these pathways. The pretectal projections to the NRTP arise from neurons in the rostromedial NOT; those to the ph are located primarily in the rostral NOT although small numbers are found within the anterior, posterior, and olivary pretectal nuclei. Of major importance is the fact that the ph injections retrogradely label neurons within the NRTP and the adjacent paramedian pontine reticular formation. This NRTP-ph projection is entirely bilateral and arises from parts of both subdivisions of the nucleus targeted by NOT afferents. Both the direct NOT-ph and indirect NOT-NRTP-ph connections provide the anatomical basis for the relay of visual (optokinetic) information to the perihypoglossal complex and, presumably, by virtue of reciprocal ph-vestibular nuclear connections, to the vestibular nuclei itself. Such pathways confirm previous physiological studies in rat and, in particular, clarify the contrasting effects of electrolytic lesions of NRTP in rat which completely abolishes optokinetic nystagmus (OKN) (Cazin et al., 1980a) vs kainic acid lesions which produce only minor effects on OKN slow velocity (Hess et al., 1988). Given these differential effects, one concludes that the critical pathway for OKN passes in relation to, but is not significantly relayed by, the neurons of the NRTP or adjacent pontine tegmentum. The present studies suggest that one such fiber system is the NOT-ph bundle. How this relatively small projection compares to other possible fiber of passage systems remains to be determined electrophysiologically.[Abstract] [Full Text] [Related] [New Search]