These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Partial sleep deprivation does not alter processes involved in semantic word priming: event-related potential evidence.
    Author: Tavakoli P, Muller-Gass A, Campbell K.
    Journal: Brain Cogn; 2015 Mar; 94():17-23. PubMed ID: 25621719.
    Abstract:
    Sleep deprivation has generally been observed to have a detrimental effect on tasks that require sustained attention for successful performance. It might however be possible to counter these effects by altering cognitive strategies. A recent semantic word priming study indicated that subjects used an effortful predictive-expectancy search of semantic memory following normal sleep, but changed to an automatic, effortless strategy following total sleep deprivation. Partial sleep deprivation occurs much more frequently than total sleep deprivation. The present study therefore employed a similar priming task following either 4h of sleep or following normal sleep. The purpose of the study was to determine whether partial sleep deprivation would also lead to a shift in cognitive strategy to compensate for an inability to sustain attention and effortful processing necessary for using the predicative expectancy strategy. Sixteen subjects were presented with word pairs, a prime and a target that were either strongly semantically associated (cat...dog), weakly associated (cow...barn) or not associated (apple...road). The subject's task was to determine if the target word was semantically associated to the prime. A strong priming effect was observed in both conditions. RTs were slower, accuracy lower, and N400 larger to unassociated targets, independent of the amount of sleep. The overall N400 did not differ as a function of sleep. The scalp distribution of the N400 was also similar following both normal sleep and sleep loss. There was thus little evidence of a difference in the processing of the target stimulus as a function of the amount sleep. Similarly, ERPs in the period between the onset of the prime and the subsequent target also did not differ between the normal sleep and sleep loss conditions. In contrast to total sleep deprivation, subjects therefore appeared to use a common predictive expectancy strategy in both conditions. This strategy does however require an effortful sustaining of attention, and may not have been entirely successful when sleep was restricted. A slight but significant decrease in accuracy was noted.
    [Abstract] [Full Text] [Related] [New Search]