These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fixed-bed adsorption of toluene on high silica zeolites: experiments and mathematical modelling using LDF approximation and a multisite model.
    Author: Brodu N, Sochard S, Andriantsiferana C, Pic JS, Manero MH.
    Journal: Environ Technol; 2015; 36(13-16):1807-18. PubMed ID: 25624172.
    Abstract:
    The adsorption of toluene (TOL) as a target volatile organic compound has been studied experimentally and modelled on various hydrophobic zeolites: Faujasite (FAU), ZSM-5 (Z) and Mordenite (MOR). The influence of the nature of the compensating cation (H+ or Na+) has also been investigated for ZSM-5 zeolite, which is known to possess three kinds of adsorption sites (sinusoidal channels, straight channels and intersections). Type I isotherms observed on FAU, Na-Z and MOR fitted well with the Langmuir model. A deviation from a type I isotherm was observed for H-Z, because of the structure of this zeolite. The Successive Langmuir Model was more successful to fit the 'bump' of the experimental curve than the Double Langmuir. Classical shapes were found for MOR, FAU and Na-Z breakthrough curves that were fitted with good accuracy using the Linear Driving Force (LDF) approximation. In the case of H-Z, a change of profile was observed during the dynamic adsorption and the differences seen between the Na-Z and H-Z behaviours were explained by the strong interactions between Na+ and adsorbed TOL at the intersection sites. The Na+ cations prevented reorientation of TOL molecules at the intersection and thereby avoided the filling of the sinusoidal channel segments. Thus, a specific model was developed for fitting the breakthrough curve of H-Z. The model developed took into account these two types of adsorption sites with the overall uptake for each site being given by an LDF approximation.
    [Abstract] [Full Text] [Related] [New Search]