These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Association of HMOX1 gene promoter polymorphisms with hyperbilirubinemia in the early neonatal period. Author: Katayama Y, Yokota T, Zhao H, Wong RJ, Stevenson DK, Taniguchi-Ikeda M, Nakamura H, Iijima K, Morioka I. Journal: Pediatr Int; 2015 Aug; 57(4):645-9. PubMed ID: 25625535. Abstract: BACKGROUND: Heme oxygenase (HO) is the rate-limiting enzyme in the heme degradation pathway that produces bilirubin. The promoter region of human heme oxygenase-1 (HMOX1) contains a polymorphic (GT)n repeat that can regulate gene expression. Here, we investigated the association of (GT)n repeat length in the HMOX1 promoter region with neonatal hyperbilirubinemia in a population of Japanese term neonates. METHODS: Using polymerase chain reaction and fragment analysis, we determined the number of (GT)n repeats in 149 Japanese neonates. To omit the effects of the G71R mutation in uridine diphosphoglucuronosyltransferase on hyperbilirubinemia, we excluded 41 neonates with the G71R mutation. As a result, 25 neonates with hyperbilirubinemia and 83 non-hyperbilirubinemic controls were included in this prospective case-control study. Allele and genotype frequencies of (GT)n repeats in the HMOX1 gene were compared between hyperbilirubinemic and non-hyperbilirubinemic control neonates. RESULTS: The prevalence of short alleles (< 22 (GT)n repeats) was significantly higher in hyperbilirubinemic than in control neonates (18% vs 7%, P = 0.015). Hyperbilirubinemia was more frequent in homozygous or heterozygous short allele carriers than control neonates (28% vs 11%, respectively, P = 0.03). Possession of short alleles was significantly associated with the development of neonatal hyperbilirubinemia (OR, 3.1; 95%CI: 1.03-9.53). CONCLUSIONS: Infants carrying short alleles (< 22 (GT)n repeats) in the HMOX1 gene promoter region appear to be at a higher risk for developing neonatal hyperbilirubinemia.[Abstract] [Full Text] [Related] [New Search]