These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enzyme-free electrochemical immunosensor based on host-guest nanonets catalyzing amplification for procalcitonin detection.
    Author: Shen WJ, Zhuo Y, Chai YQ, Yang ZH, Han J, Yuan R.
    Journal: ACS Appl Mater Interfaces; 2015 Feb 25; 7(7):4127-34. PubMed ID: 25629216.
    Abstract:
    An enzyme-free electrochemical immunosensor based on the host-guest nanonets of N,N-bis(ferrocenoyl)-diaminoethane/β-cyclodextrins/poly(amidoamine) dendrimer-encapsulated Au nanoparticles (Fc-Fc/β-CD/PAMAM-Au) for procalcitonin (PCT) detection has been developed in this study. The signal probe was constructed as follows: amine-terminated β-CD was adsorbed to PAMAM-Au first, and then the prepared Fc-Fc was recognized by the β-CD to form stable host-guest nanonets. Next, secondary antibodies (Ab2) were attached into the formed netlike nanostructure of Fc-Fc/β-CD/PAMAM-Au by chemical absorption between PAMAM-Au and -NH2 of β-CD. Herein, the PAMAM-Au act not only as nanocarriers for anchoring large amounts of the β-CD and Ab2 but also as nanocatalysts to catalyze the oxidation of ascorbic acid (AA) for signal amplification. Moreover, the Fc-Fc could be stably immobilized by the hydrophobic inner cavity of β-CD as well as improving solubility by the hydrophilic exterior of β-CD. With the unique structure of two ferrocene units, Fc-Fc not only affords more electroactive groups to make the electrochemical response more sensitive but also plays a role of combining dispersive β-CD-functionalized PAMAM-Au to form the netlike nanostructure. Furthermore, Fc-Fc exhibits good catalytic activity for AA oxidation. When the detection solution contained AA, the synergetic catalysis of PAMAM-Au and Fc-Fc to AA oxidation could be obtained, realizing enzyme-free signal amplification. The proposed immunosensor provided a linear range from 1.80 pg/mL to 500 ng/mL for PCT detection and a detection limit of 0.36 pg/mL under optimal experimental conditions. Moreover, the immunosensor has shown potential application in clinical detection of PCT.
    [Abstract] [Full Text] [Related] [New Search]