These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Left ventricular function during acute high-altitude exposure in a large group of healthy young Chinese men. Author: Rao M, Li J, Qin J, Zhang J, Gao X, Yu S, Yu J, Chen G, Xu B, Li H, Rao R, Huang L, Jin J. Journal: PLoS One; 2015; 10(1):e0116936. PubMed ID: 25629435. Abstract: OBJECTIVE: The purpose of this study was to observe left ventricular function during acute high-altitude exposure in a large group of healthy young males. METHODS: A prospective trial was conducted in Szechwan and Tibet from June to August, 2012. By Doppler echocardiography, left ventricular function was examined in 139 healthy young Chinese men at sea level; within 24 hours after arrival in Lhasa, Tibet, at 3700 m; and on day 7 following an ascent to Yangbajing at 4400 m after 7 days of acclimatization at 3700 m. The resting oxygen saturation (SaO2), heart rate (HR) and blood pressure (BP) were also measured at the above mentioned three time points. RESULTS: Within 24 hours of arrival at 3700 m, the HR, ejection fraction (EF), fractional shortening (FS), stroke volume (SV), cardiac output (CO), and left ventricular (LV) Tei index were significantly increased, but the LV end-systolic dimension (ESD), end-systolic volume (ESV), SaO2, E/A ratio, and ejection time (ET) were significantly decreased compared to the baseline levels in all subjects. On day 7 at 4400 m, the SV and CO were significantly decreased; the EF and FS Tei were not decreased compared with the values at 3700 m; the HR was further elevated; and the SaO2, ESV, ESD, and ET were further reduced. Additionally, the E/A ratio was significantly increased on day 7 but was still lower than it was at low altitude. CONCLUSION: Upon acute high-altitude exposure, left ventricular systolic function was elevated with increased stroke volume, but diastolic function was decreased in healthy young males. With higher altitude exposure and prolonged acclimatization, the left ventricular systolic function was preserved with reduced stroke volume and improved diastolic function.[Abstract] [Full Text] [Related] [New Search]