These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pharmacological methyl group donors block skeletal metastasis in vitro and in vivo.
    Author: Shukeir N, Stefanska B, Parashar S, Chik F, Arakelian A, Szyf M, Rabbani SA.
    Journal: Br J Pharmacol; 2015 Jun; 172(11):2769-81. PubMed ID: 25631332.
    Abstract:
    BACKGROUND AND PURPOSE: DNA hypomethylation was previously implicated in metastasis. In the present study, we examined whether methyl supplementation with the universal methyl donor S-adenosylmethionine (SAM) inhibits prostate cancer associated skeletal metastasis. EXPERIMENTAL APPROACH: Highly invasive human prostate cancer cells PC-3 and DU-145 were treated with vehicle alone, S-adenosylhomocysteine (SAH) or SAM and their effects on tumour cell proliferation, invasion, migration and colony formation were monitored. For in vivo studies, control (SAH) and SAM-treated PC-3 cells were injected into the tibia of Fox chase SCID mice and skeletal lesions were determined by X-ray and μCT. To understand possible mechanisms involved, we delineated the effect of SAM on the genome-wide methylation profile of PC-3 cells. KEY RESULTS: Treatment with SAM resulted in a dose-dependent inhibition of tumour cell proliferation, invasion, cell migration, colony formation and cell cycle characteristics. Animals injected with 250 μM SAM-treated cells developed significantly smaller skeletal lesions, which were associated with increases in bone volume to tumour volume ratio and connectivity density as well as decreased trabecular spacing. Genome-wide methylation analysis showed differential methylation in several key signalling pathways implicated in prostate cancer including the signal transducer and activator of transcription 3 (STAT3) pathway. A selective STAT3 inhibitor decreased tumour cell invasion, effects which were less pronounced as compared with SAM. CONCLUSIONS AND IMPLICATIONS: These studies provide a possible mechanism for the role of DNA demethylation in the development of skeletal metastasis and a rationale for the use of hypermethylation pharmacological agents to impede the development and progression of skeletal metastasis.
    [Abstract] [Full Text] [Related] [New Search]