These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite.
    Author: Kıranşan M, Khataee A, Karaca S, Sheydaei M.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr 05; 140():465-73. PubMed ID: 25638428.
    Abstract:
    In this study, the photocatalytic ability of ZnO/Montmorilonite (ZnO/MMT) nanocomposite under UV-A, UV-B and UV-C radiation was investigated. ZnO nanoparticles were synthesized on the surface of MMT and used as photocatalyst in decolorization of Disperse Red 54 (DR54) solution. Synthesized nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques and nitrogen adsorption/desorption isotherms curves. The average width of synthesized ZnO particles is in the range of 30-45 nm. Effect of UV light regions, initial dye concentration, initial dosage of nanocomposite, and reusability of catalyst was studied on decolorization efficiency. The highest decolorization efficiency was achieved under UV-C radiation. A three-layered feed forward back propagation artificial neural network model was developed to predict the photocatalysis of DR54 under UV-C radiation. According to ANN model the ZnO/MMT dosage with a relative importance of 49.21% is the most influential parameter in the photocatalytic decolorization process.
    [Abstract] [Full Text] [Related] [New Search]