These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction between S-100 proteins and steady-state and taxol-stabilized microtubules in vitro.
    Author: Donato R, Giambanco I.
    Journal: J Neurochem; 1989 Apr; 52(4):1010-7. PubMed ID: 2564420.
    Abstract:
    S-100 proteins are a group of three 21-kilodalton, acidic, Ca2+-binding proteins of the "E-F hand" type shown to regulate several cell activities, including microtubule (MT) assembly-disassembly. We show here that S-100 proteins interact with MTs assembled from either whole microtubule protein or purified tubulin, both in the absence and in the presence of the MT-stabilizing drug taxol. Evidence for the binding of S-100 to MTs comes from both kinetic (turbidimetric) and binding studies. Kinetically, S-100 enhances the disassembly of steady-state MTs in the presence of high concentrations of colchicine or vinblastine at 10 microM free Ca2+ and disassembles taxol-stabilized MTs at high Ca2+ concentrations. Experiments performed using 125I-labeled S-100 show that S-100 binds Ca2+ independently to a single set of sites on taxol-stabilized MTs assembled from pure tubulin with an affinity of 6 x 10(-5) M and a stoichiometry of 0.15 mol of S-100/mol of polymerized tubulin. Under certain conditions, S-100 proteins also cosediment with MTs prepared by coassembly of S-100 with MTs, probably in the form of an S-100-tubulin complex. Because S-100 binds to MTs under conditions where this protein fraction does not produce observable effects on the kinetics of assembly-disassembly, e.g., in the absence of Ca2+ at pH 6.7, we conclude that the S-100 binding to MTs does not affect the stability of MTs per se, but rather creates conditions for increased sensitivity of MTs to Ca2+.
    [Abstract] [Full Text] [Related] [New Search]