These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli.
    Author: Honjo H, Tsuruno K, Tatsuke T, Sato M, Hanai T.
    Journal: J Biosci Bioeng; 2015 Aug; 120(2):199-204. PubMed ID: 25650075.
    Abstract:
    3-Hydroxypropionic acid (3-HP) is an important platform C3 chemical; production of 3-HP in recombinant Escherichia coli by synthetic pathways has been the focus of a lot of research. When glycerol is used as a substrate to produce 3-HP in E. coli, only the ALDH pathway (employing aldehyde dehydrogenase (ALDH) for conversion of 3-hydroxypropionaldehyde (3-HPA) into 3-HP) has been utilized as a synthetic pathway. However, several bacteria (including Klebsiella pneumoniae) are known to have the ability to produce 3-HP by the Pdu pathway (employing the PduP, PduL, and PduW enzymes). Here, we report the production of 3-HP in E. coli by using the Pdu pathway from K. pneumoniae as a synthetic pathway. Moreover, a strain harboring a dual synthetic pathways (ALDH and Pdu) exhibited a 70% increase in 3-HP titer compared to one harboring the ALDH pathway alone (56.1 ± 0.736 mM and 33.1 ± 0.920 mM, respectively). To our knowledge, this is the first report of 3-HP production by E. coli harboring the Pdu pathway, with the dual synthetic pathway showing the highest yield ever reported by batch culture [54.1% (mol/mol)].
    [Abstract] [Full Text] [Related] [New Search]