These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative analysis of the profiles of IgG subclass-specific responses to Plasmodium falciparum apical membrane antigen-1 and merozoite surface protein-1 in naturally exposed individuals living in malaria hypoendemic settings, Iran.
    Author: Rouhani M, Zakeri S, Mehrizi AA, Djadid ND.
    Journal: Malar J; 2015 Feb 05; 14():58. PubMed ID: 25652589.
    Abstract:
    BACKGROUND: Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) and the 19-kDa C-terminal region of merozoite surface protein-1 (PfMSP-1₁₉) are candidate malaria vaccine antigens expressed on merozoites and sporozoites. This investigation was performed to evaluate simultaneously the naturally-acquired antibodies to PfAMA-1 and PfMSP-1₁₉ and to compare IgG subclass profiles to both antigens in naturally exposed individuals living in malaria hypoendemic areas in Iran to determine which antigen has better ability to detect sero-positive individuals infected with P. falciparum. METHODS: In this investigation, 101 individuals from the malaria-endemic areas in Iran were examined. PfAMA-1 and PfMSP-1₁₉ were expressed in Escherichia coli, and IgG isotype composition of naturally acquired antibodies to the antigens (as single or in combination) was measured by ELISA assay. RESULTS: The result showed that 87.1% and 84.2% of the studied individuals had positive anti-PfAMA-1 and -PfMSP-1₁₉ IgG antibody responses, respectively, and the prevalence of responders did not differ significantly (P > 0.05). Moreover, IgG1 and IgG3 were predominant over IgG2 and IgG4 antibodies and the prevalence of IgG and its subclasses to two tested antigens had no significant correlation with age and exposure (P > 0.05). The present data confirmed that when recombinant PfAMA-1 and recombinant PfMSP-1₁₉ antigens were combined in ELISA at equal ratios of 200 ng (100 ng each antigen/well) and 400 ng (200 ng each antigen/well), 86.1% and 87.1% of positives sera were detected among the examined samples, respectively. CONCLUSIONS: The two tested recombinant antigens are immunogenic molecules, and individuals in low transmission areas in Iran could develop and maintain equal immune responses to PfAMA-1 and PfMSP-1₁₉. Therefore, these results could support the design of a universal PfAMA-1- and PfMSP-1₁₉-based vaccine. Also, both recombinant antigens could be used in combination as reliable serology markers to perform immuno-epidemiological studies in malaria-endemic areas of Iran during elimination strategy. The present information could be of use in control and elimination programmes in Iran and other similar malaria settings.
    [Abstract] [Full Text] [Related] [New Search]