These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CLIPdb: a CLIP-seq database for protein-RNA interactions. Author: Yang YC, Di C, Hu B, Zhou M, Liu Y, Song N, Li Y, Umetsu J, Lu ZJ. Journal: BMC Genomics; 2015 Feb 05; 16(1):51. PubMed ID: 25652745. Abstract: BACKGROUND: RNA-binding proteins (RBPs) play essential roles in gene expression regulation through their interactions with RNA transcripts, including coding, canonical non-coding and long non-coding RNAs. Large amounts of crosslinking immunoprecipitation (CLIP)-seq data (including HITS-CLIP, PAR-CLIP, and iCLIP) have been recently produced to reveal transcriptome-wide binding sites of RBPs at the single-nucleotide level. DESCRIPTION: Here, we constructed a database, CLIPdb, to describe RBP-RNA interactions based on 395 publicly available CLIP-seq data sets for 111 RBPs from four organisms: human, mouse, worm and yeast. We consistently annotated the CLIP-seq data sets and RBPs, and developed a user-friendly interface for rapid navigation of the CLIP-seq data. We applied a unified computational method to identify transcriptome-wide binding sites, making the binding sites directly comparable and the data available for integration across different CLIP-seq studies. The high-resolution binding sites of the RBPs can be visualized on the whole-genome scale using a browser. In addition, users can browse and download the identified binding sites of all profiled RBPs by querying genes of interest, including both protein coding genes and non-coding RNAs. CONCLUSION: Manually curated metadata and uniformly identified binding sites of publicly available CLIP-seq data sets will be a foundation for further integrative and comparative analyses. With maintained up-to-date data sets and improved functionality, CLIPdb ( http://clipdb.ncrnalab.org ) will be a valuable resource for improving the understanding of post-transcriptional regulatory networks.[Abstract] [Full Text] [Related] [New Search]