These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis.
    Author: Frodermann V, van Puijvelde GH, Wierts L, Lagraauw HM, Foks AC, van Santbrink PJ, Bot I, Kuiper J, de Jager SC.
    Journal: J Immunol; 2015 Mar 01; 194(5):2208-18. PubMed ID: 25653425.
    Abstract:
    Modulation of immune responses may form a powerful approach to treat atherosclerosis. It was shown that clearance of apoptotic cells results in tolerance induction to cleared Ags by dendritic cells (DCs); however, this seems impaired in atherosclerosis because Ag-specific tolerance is lacking. This could result, in part, from decreased emigration of DCs from atherosclerotic lesions because of the high-cholesterol environment. Nonetheless, local induction of anti-inflammatory responses by apoptotic cell clearance seems to dampen atherosclerosis, because inhibition of apoptotic cell clearance worsens atherosclerosis. In this study, we assessed whether i.v. administration of oxLDL-induced apoptotic DCs (apop(ox)-DCs) and, as a control, unpulsed apoptotic DCs could modulate atherosclerosis by inducing tolerance. Adoptive transfer of apop(ox)-DCs into low-density lipoprotein receptor knockout mice either before or during feeding of a Western-type diet resulted in increased numbers of CD103(+) tolerogenic splenic DCs, with a concomitant increase in regulatory T cells. Interestingly, both types of apoptotic DCs induced an immediate 40% decrease in Ly-6C(hi) monocyte numbers and a 50% decrease in circulating CCL2 levels, but only apop(ox)-DC treatment resulted in long-term effects on monocytes and CCL2 levels. Although initial lesion development was reduced by 40% in both treatment groups, only apop(ox)-DC treatment prevented lesion progression by 28%. Moreover, progressed lesions of apop(ox)-DC-treated mice showed a robust 45% increase in collagen content, indicating an enhanced stability of lesions. Our findings clearly show that apoptotic DC treatment significantly decreases lesion development, but only apop(ox)-DCs can positively modulate lesion progression and stability. These findings may translate into a safe treatment for patients with established cardiovascular diseases using patient-derived apop(ox)-DCs.
    [Abstract] [Full Text] [Related] [New Search]