These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The comparison of dispersive solid phase extraction and multi-plug filtration cleanup method based on multi-walled carbon nanotubes for pesticides multi-residue analysis by liquid chromatography tandem mass spectrometry.
    Author: Qin Y, Zhao P, Fan S, Han Y, Li Y, Zou N, Song S, Zhang Y, Li F, Li X, Pan C.
    Journal: J Chromatogr A; 2015 Mar 13; 1385():1-11. PubMed ID: 25660523.
    Abstract:
    In this study, dispersive-Solid Phase Extraction (d-SPE) cleanup and multi-plug filtration cleanup (m-PFC) methods were compared for 25 representative pesticides in six matrices (wheat, spinach, carrot, apple, citrus and peanut) by QuEChERS-LC-ESI-MS/MS detection. The type of sorbents in dispersive-SPE (d-SPE) was optimized for the above matrices. Multi-walled carbon nanotubes (MWCNTs), which mixed other materials like PSA (Primary Secondary Amines), GCB (Graphitized Carbon Black) and C18 (Octadecyl-silica), showed brilliant cleanup performance in multi residue monitoring (MRM) pesticide residue analysis. Cleanup effects with d-SPE and m-PFC methods were examined. When spiked at 3 concentration levels of 10, 100, 500 μg/kg in above matrices, for both d-SPE and m-PFC methods, the recoveries ranged from 70 to 110% with relative standard deviations (RSDs) lower than 20%. Limits of quantification (LOQs) for both cleanup methods ranged from 1 to 25 μg/kg. Matrix-matched calibrations were performed with the coefficients of determination more than 0.99 between concentration levels of 10-1000 μg/kg. It was found that m-PFC was more convenient and effective than d-SPE with the same sorbents, due to the increased contact time and contact area between the extracts and compressed sorbents. The study demonstrated that m-PFC method could be used as a rapid, convenient and high-throughput cleanup method for analysis of pesticide residues.
    [Abstract] [Full Text] [Related] [New Search]