These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis, crystal structures and magnetic properties of mer-cyanideiron(III)-based 1D heterobimetallic cyanide-bridged chiral coordination polymers.
    Author: Zhang D, Zhuo S, Zhang H, Wang P, Jiang J.
    Journal: Dalton Trans; 2015 Mar 14; 44(10):4655-64. PubMed ID: 25661782.
    Abstract:
    Two pairs of cyanide-bridged Fe(III)–Mn(III)/Cu(II) chiral enantiomer coordination polymers {[Mn(S,S/R,R-Salcy)(CH3OH)2]{[Mn(S,S/R,R-Salcy)][Fe(bbp)(CN)3]}}2n (1,2) (bbp = bis(2-benzimidazolyl)pyridine dianion) and {[Cu(S,S/R,R-Chxn)2]2[Fe2(tbbp)(CN)6]}n (3,4) (tbbp = tetra(3-benzimidazolyl)-4,4′-bipyridine tetraanion) have been successfully prepared by employing mer-tricyanometallate [PPh4]2[Fe(bbp)(CN)3] or the newly bimetallic mer-cyanideiron(III) precursor K4[Fe2(tbbp)(CN)6] as building blocks and with chiral manganese(III)/copper(II) compounds as assemble segments. The four complexes have been characterized by elemental analysis, IR spectroscopy, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra. Single X-ray diffraction reveals that complexes 1 and 2 possess a single anionic chain structure consisting of the asymmetric chiral {[Mn(S,S/R,R-Salcy)][Fe(bbp)(CN)3]}2(2−) unit with free [Mn(S,S/R,R-Salcy)](+) as balanced cations. The cyanide-bridged Fe(III)–Cu(II) complexes 3 and 4 can be structurally characterized as neutral ladder-like double chains composed of the alternating cyanide-bridged Fe–Cu units. Our investigation of magnetic susceptibilities reveals the antiferromagnetic coupling between the cyanide-bridged Fe(III) and Mn(III)/Cu(II) ions for complexes 1–4. These results have been further confirmed by theoretical simulation through numerical matrix diagonalization techniques using a Fortran program or a uniform chain model, leading to the coupling constants J = −7.36 cm(−1), D = −1.52 cm(−1) (1) and J = −4.35 cm(−1) (3), respectively.
    [Abstract] [Full Text] [Related] [New Search]