These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices.
    Author: Muthiah K, Robson D, Prichard R, Walker R, Gupta S, Keogh AM, Macdonald PS, Woodard J, Kotlyar E, Dhital K, Granger E, Jansz P, Spratt P, Hayward CS.
    Journal: J Heart Lung Transplant; 2015 Apr; 34(4):522-9. PubMed ID: 25662859.
    Abstract:
    BACKGROUND: Continuous-flow left ventricular assist devices (CF-LVADs) improve functional capacity in patients with end-stage heart failure. Pump output can be increased by increased pump speed as well as changes in loading conditions. METHODS: The effect of exercise on invasive hemodynamics was studied in two study protocols. The first examined exercise at fixed pump speed (n = 8) and the second with progressive pump speed increase (n = 11). Patients underwent simultaneous right-heart catheterization, mixed venous saturation, echocardiography and mean arterial pressure monitoring. Before exercise, a ramp speed study was performed in all patients. Patients then undertook symptom-limited supine bicycle exercise. RESULTS: Upward titration of pump speed at rest (by 11.6 ± 8.6% from baseline) increased pump flow from 5.3 ± 1.0 to 6.3 ± 1.0 liters/min (18.9% increase, p < 0.001) and decreased pulmonary capillary wedge pressure (PCWP; 13.6 ± 5.4 to 8.9 ± 4.1 mm Hg, p < 0.001). Exercise increased pump flow to a similar extent as pump speed change alone (to 6.2 ± 1.0 liters/min, p < 0.001), but resulted in increased right- and left-heart filling pressures (right atrial pressure [RAP]: 16.6 ± 7.5 mm Hg, p < 0.001; PCWP 24.8 ± 6.7 mm Hg, p < 0.001). Concomitant pump speed increase with exercise enhanced the pump flow increase (to 7.0 ± 1.4 liters/min, p < 0.001) in Protocol 2, but did not alleviate the increase in pre-load (RAP: 20.5 ± 8.0 mm Hg, p = 0.07; PCWP: 26.8 ± 12.7 mm Hg; p = 0.47). Serum lactate and NT-proBNP levels increased significantly with exercise. CONCLUSIONS: Pump flow increases with up-titration of pump speed and with exercise. Although increased pump speed decreases filling pressures at rest, the benefit is not seen with exercise despite concurrent up-titration of pump speed.
    [Abstract] [Full Text] [Related] [New Search]