These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of blood flow occlusion on muscle oxygenation characteristics and the parameters of the power-duration relationship. Author: Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ. Journal: J Appl Physiol (1985); 2015 Apr 01; 118(7):880-9. PubMed ID: 25663673. Abstract: It was previously (Monod H, Scherrer J. Ergonomics 8: 329-338, 1965) postulated that blood flow occlusion during exercise would reduce critical power (CP) to 0 Watts (W), while not altering the curvature constant (W'). We empirically assessed the influence of blood flow occlusion on CP, W', and muscle oxygenation characteristics. Ten healthy men (age: 24.8 ± 2.6 yr; height: 180 ± 5 cm; weight: 84.6 ± 10.1 kg) completed four constant-power handgrip exercise tests during both control blood flow (control) and blood flow occlusion (occlusion) for the determination of the power-duration relationship. Occlusion CP (-0.7 ± 0.4 W) was significantly (P < 0.001) lower than control CP (4.1 ± 0.7 W) and significantly (P < 0.001) lower than 0 W. Occlusion W' (808 ± 155 J) was significantly (P < 0.001) different from control W' (558 ± 129 J), and all 10 subjects demonstrated an increased occlusion W' with a mean increase of ∼49%. The present findings support the aerobic nature of CP. The findings also demonstrate that the amount of work that can be performed above CP is constant for a given condition, but can vary across conditions. Moreover, this amount of work that can be performed above CP does not appear to be the determinant of W', but rather a consequence of the depletion of intramuscular energy stores and/or the accumulation of fatigue-inducing metabolites, which limit exercise tolerance and determine W'.[Abstract] [Full Text] [Related] [New Search]