These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An investigation of nifedipine miscibility in solid dispersions using Raman spectroscopy.
    Author: Keratichewanun S, Yoshihashi Y, Sutanthavibul N, Terada K, Chatchawalsaisin J.
    Journal: Pharm Res; 2015 Jul; 32(7):2458-73. PubMed ID: 25673042.
    Abstract:
    PURPOSE: Raman spectroscopy is potentially an extremely useful tool for the understanding of drug-polymer interactions in solid dispersions. This is examined and demonstrated for the case of solid dispersions of nifedipine in a polymeric substrate. METHODS: Solid dispersions consisting of nifedipine and polyvinyl caprolactam--polyvinyl acetate--polyethylene glycol graft copolymer (Soluplus®) were prepared by freeze drying, melting and solvent evaporation at drug loadings of 10, 30, 50, 70 and 90% w/w. Drug-polymer interactions in the amorphous solid dispersion were estimated by Raman spectroscopy. The correlation between the solid state stability of the drug in a solid dispersion and the extent of drug-polymer interaction was monitored by X-ray diffractometry. RESULTS: The miscibility limit of nifedipine-Soluplus® was found to be 30% w/w drug loading for all preparation methods. The drug was found to interact with Soluplus®, through a hydrophilic interaction identified by infrared spectroscopy and a hydrophobic interaction which could be quantified by Raman spectroscopy. The average extent of the drug-polymer interaction in the studied amorphous samples at equivalent drug loading was similar, regardless of the preparation method. Inhomogeneities in samples prepared by melting contributed to a wider variation in drug-polymer interaction and poorer solid state stability, in terms of its crystallization tendency. CONCLUSIONS: Raman spectroscopy was shown to be a useful technique in classifying miscibility levels based on the hydrophobic interaction between the drug and the polymer. Different drug loadings showed varying degrees of drug-polymer interaction, and hence variable solid state stability of the solid dispersion.
    [Abstract] [Full Text] [Related] [New Search]