These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency.
    Author: Zhou N, Polavarapu L, Wang Q, Xu QH.
    Journal: ACS Appl Mater Interfaces; 2015 Mar 04; 7(8):4844-50. PubMed ID: 25674821.
    Abstract:
    Aggregation of plasmonic nanoparticles under harsh conditions has been one of the major obstacles to their potential applications. Here we present the preparation of uniform mesoporous SnO2 shell coated Au nanospheres, Au nanorods and Au/Ag core-shell nanorods and their applications in molecular sensing and catalysis. In these nanostructures, the mesoporous SnO2 shell stabilizes the metal nanoparticle and allows the metal core to be exposed to the surrounding environment for various applications at the same time. These nanostructures display high refractive index sensitivity, which makes them promising materials for LSPR based molecular sensing. Applications of these materials as catalysts for reduction of 4-nitrophenol by NaBH4 have also been demonstrated. Both uncoated and SnO2-coated anisotropic Au and Au/Ag nanorods were found to display significantly better catalytic efficiency compared to the corresponding spherical Au nanoparticles. Catalytic activities of different metal nanoparticles were significantly enhanced by 4-6 times upon coating with the mesoporous SnO2 shell. The enhanced catalytic activity of metal nanoparticles upon SnO2 coating was attributed to charge-redistribution between noble metal and SnO2 that disperses the electrons to a large area and prolonged electron lifetime in SnO2-coated metal nanoparticles. The charge transfer mechanism of enhanced catalytic efficiency for SnO2-coated metal nanoparticles has been further demonstrated by photochemical reduction of silver ions on the outer surface of these NPs. These metal/semiconductor core-shell nanomaterials are potentially useful for various applications such as molecular sensing and catalysis.
    [Abstract] [Full Text] [Related] [New Search]