These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Separation and purification of α-glucosidase inhibitors from Polygonatum odoratum by stepwise high-speed counter-current chromatography combined with Sephadex LH-20 chromatography target-guided by ultrafiltration-HPLC screening. Author: Zhou X, Liang J, Zhang Y, Zhao H, Guo Y, Shi S. Journal: J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar 15; 985():149-54. PubMed ID: 25682336. Abstract: Although Polygonatum odoratum has been widely used as medicinal plant and food supplement for treating diabetes, little is known regarding its bioactive components. In this study, ultrafiltration-HPLC based ligand screening was developed to screen α-glucosidase inhibitors from P. odoratum for the first time. Then bioactive components were target-guided separated by combining stepwise high-speed counter-current chromatography (HSCCC) using petroleum ether-ethyl acetate-methanol-water (1:4:0.8:4.2, v/v/v/v), (1:4:1.8:3.2, v/v/v/v) and (1:4:2.3:2.7, v/v/v/v) as solvent systems with Sephadex LH-20 chromatography eluted by MeCN-MeOH (1:1, v/v). Five phenethyl cinnamides, N-cis-feruloyloctopamine (1); N-trans-p-coumaroyloctopamine (2), N-trans-feruloyloctopamine (3), N-trans-p-coumaroyltyramine (4) and N-trans-feruloyltyramine (5), and four homoisoflavanones, (3R)-5,7-dihydroxyl-3-(2',4'-dihydroxylbenzyl)-chroman-4-one (6), (3R)-5,7-dihydroxyl-6-methyl-3-(4'-hydroxylbenzyl)-chroman-4-one (7), (3R)-5,7-dihydroxyl-6-methyl-8-methoxyl-3-(4'-hydroxylbenzyl)-chroman-4-one (8); and (3R)-5,7-dihydroxyl-6,8-dimethyl-3-(4'-hydroxylbenzyl)-chroman-4-one) (9), with purity over 98.5% were purified, and their structures were identified by UV, MS, and (1)H NMR. Notably, compounds 2 and 4 were first reported in genus Polygonatum, while compound 1 was first obtained from family Liliaceae. In addition, α-glucosidase inhibitory activities of compounds 1-9 were evaluated, and compounds 2 and 4 exhibited stronger α-glucosidase inhibitory activity with IC50 values of 2.3 and 2.7μM. The results suggested the potential medicinal use of P. odoratum, and the technology could be widely applied for rapid screening and preparative separation of a group of bioactive compounds from complex matrix.[Abstract] [Full Text] [Related] [New Search]