These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antiproliferative and apoptosis-inducing activity of schisandrin B against human glioma cells. Author: Li Q, Lu XH, Wang CD, Cai L, Lu JL, Wu JS, Zhuge QC, Zheng WM, Su ZP. Journal: Cancer Cell Int; 2015; 15(1):12. PubMed ID: 25685066. Abstract: BACKGROUND: Malignant glioma is the most devastating and aggressive tumour in the brain and is characterised by high morbidity, high mortality and extremely poor prognosis. The main purpose of the present study was to investigate the effects of schisandrin B (Sch B) on glioma cells both in vitro and in vivo and to explore the possible anticancer mechanism underlying Sch B-induced apoptosis and cell cycle arrest. METHODS: The anti-proliferative ability of Sch B on glioma cells were assessed by MTT and clony formation assays. Flow cytometric analysis was used to detect cell cycle changes. Apoptosis was determined by Hoechst 33342 staining and annexin V/PI double-staining assays. The mitochondrial membrane potential was detected by Rhodamine 123 staining. The in vivo efficacy of Sch B was measured using a U87 xenograft model in nude mice. The expressions of the apoptosis-related and cell cycle-related proteins were analysed by western blot. Student's t-test was used to compare differences between treated groups and their controls. RESULTS: We found that Sch B inhibited growth in a dose- and time-dependent manner as assessed by MTT assay. In U87 and U251 cells, the number of clones was strongly suppressed by Sch B. Flow cytometric analysis revealed that Sch B induced cell cycle arrest in glioma cells at the G0/G1 phase. In addition, Sch B induced glioma cell apoptosis and reduced mitochondrial membrane potential (ΔΨm) in a dose-dependent manner. Mechanically, western blot analysis indicated that Sch B induced apoptosis by caspase-3, caspase-9, PARP, and Bcl-2 activation. Moreover, Sch B significantly inhibited tumour growth in vivo following the subcutaneous inoculation of U87 cells in athymic nude mice. COCLUSIONS: In summary, Sch B can reduce cell proliferation and induce apoptosis in glioma cells and has potential as a novel anti-tumour therapy to treat gliomas.[Abstract] [Full Text] [Related] [New Search]