These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Effect of sulfur on the species of Fe and As under redox condition in paddy soil]. Author: Tang BP, Yang SJ, Wang DZ, Rao W, Zhang YN, Wang D, Zhu YJ. Journal: Huan Jing Ke Xue; 2014 Oct; 35(10):3851-61. PubMed ID: 25693393. Abstract: Redox conditions of the polluted paddy soil with exogenous As were simulated by redox reaction apparatus after flowing N2 and O2 applied with different forms of inorganic sulfur(CK-S0, elemental sulfur-S1 and sulfate-S2). Results showed that redox potential (Eh) was about -100 - -200 mV and the pH 7.0-8.0 and the pe + pH 4-7 in soil solution when flowed N2, and Eh about 200 mV and the pH 6.5-7.5 and pe + pH 9-12 when continuously flowed O2. Concentrations of the dissolved Fe in soil solution were in 1.2-1.6 mg x L(-1) either flowed N2 or O2, and the order of Fe concentrations was AsS0 treatment > AsS1 treatment > AsS2 treatment. Amounts of soil Fe oxide by HCl extraction from different treatments were 5 g · kg(-1) lower than the original soil [(21.4 ± 0.3) g · kg(-1)] when flowed N2, and it was in favor of the transformation of crystal Fe into amorphous iron and Fe2+. Activity of Fe oxides from different treatments increased comparing to that of the original soil (46. 8%), and the order of activity of Fe oxides was AsS2 treatment (49.4%) < AsS1 treatment (60%). Fe2+ in solution and FeS were oxidized into Fe3+, and hydrolysis of Fe3+ was produced into Fe(OH)3 precipitation when flowed O2. It increased the contents of acid-soluble and crystal Fe oxide, and the order of activity of Fe oxides was AsS1 (41.2%) treatment > AsS2 (36.1%) treatment. Concentrations of As in soil solution were in the order of AsS0 [(1.13 ± 0.04) mg · L(-1)] > AsS1 [(0.89 ± 0.01) mg L(- 1)] > AsS2 [ (0.77 ± 0.04 )mg · L(-1)] when flowed N2 and was AsS1 [(0.77 ± 0.01) mg · L(-1)] > AsS0 [(0.20 ± 0.09 ) mg · L(-1)] > AsS2 [(0.09 ± 0.01) mg · L(-1)] when flowed O2. The proportions of arsenic fractions followed the order of the residual phases (34.9%-41.4%) ≈ specifically-sorbed (37.4%-39.5%) > well-crystallized hydrous oxides of Fe/Mn (23.3%-25.6%) > non-specifically sorbed (2.4%-3.3%) > amorphous hydrous oxides of Fe/Mn (0.5%-0.8%) when flowed N2, and was the residual phases (30.8%-39.3%) specifically-sorbed (30.3%-34.7%) > well-crystallized hydrous oxides of Fe/Mn (26.0%-28.7%) > amorphous hydrous oxides of Fe/Mn (9.3%-10.7%) > non-specifically sorbed (0.5%-1.6%) when flowed O2. Arsenic from amorphous hydrous oxides of Fe/Mn raised about 9% by flowing O2 than by flowing N2. This could be the effect of the aging amorphous Fe/Mn on the transformation of As, and the increased activity of iron oxide under reducing conditions and enhanced mobility of Arsenic. Elemental surfer system could increase mobility of arsenic more than sulfate system which may decrease degree of activity of iron oxide.[Abstract] [Full Text] [Related] [New Search]