These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: SUSCEPTIBILITY ARTIFACTS ON T2*-WEIGHTED MAGNETIC RESONANCE IMAGING OF THE CANINE AND FELINE SPINE. Author: Hammond LJ, Hecht S. Journal: Vet Radiol Ultrasound; 2015; 56(4):398-406. PubMed ID: 25693447. Abstract: The T2*-weighted gradient recalled echo sequence is a sensitive means to detect blood degradation products. While not a routine sequence in magnetic resonance imaging of the spine in small animals, it can provide additional valuable information in select cases. The goal of this retrospective, cross-sectional study was to describe findings when acquiring this sequence during magnetic resonance imaging examination of the spine in small animals. The University of Tennessee's veterinary radiology database was searched for dogs and cats that underwent magnetic resonance imaging for suspect spinal disease in which a T2*-weighted gradient recalled echo sequence was acquired and susceptibility artifact was identified. The following information was recorded: signalment, clinical signs, location and appearance of susceptibility artifact, and final diagnosis. Thirty-nine cases were included in the study. Extradural susceptibility artifacts were observed in cases of intervertebral disc herniation with or without associated hemorrhage (n = 28), extradural hemorrhage associated with spinal trauma (n = 2), hemophilia (n = 1), and in a cystic extradural mass (n = 1). Remaining lesions displaying susceptibility artifact were intramedullary and included presumptive acute noncompressive nucleus pulposus extrusion (n = 2), hematoma (n = 1), hemangiosarcoma metastasis (n = 1), intramedullary disc extrusion (n = 1), presumptive meningomyelitis (n = 1), and a mass of undetermined etiology (n = 1). Inclusion of a T2*-weighted gradient recalled echo sequence may be helpful in spinal magnetic resonance imaging when standard imaging sequences are ambiguous or intramedullary lesions are observed.[Abstract] [Full Text] [Related] [New Search]