These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantitative Determination of Secoiridoids and Phenylpropanoids in Different Extracts of Ligustrum Vulgare L. Leaves by a Validated HPTLC-Photodensitometry Method. Author: Czerwińska ME, Ziarek M, Bazylko A, Osińska E, Kiss AK. Journal: Phytochem Anal; 2015; 26(4):253-60. PubMed ID: 25693970. Abstract: INTRODUCTION: The genus Ligustrum (Oleaceae) is distributed in Europe and Asia (south China and Korea), where it is used to prevent hypertension, sore throats, inflammation and diabetes. The main groups of compounds in extracts of Ligustrum vulgare are biologically active secoiridoids and phenylpropanoids. OBJECTIVES: The aim of the study was primarily the development and validation of a HPTLC-photodensitometry method for separation and determination of secoiridoids (oleacein, oleuropein) and phenylpropanoids (echinacoside) in different extracts prepared from leaves of L. vulgare. A secondary issue was the quantitative screening of oleacein, oleuropein and echinacoside in extracts from leaves collected at different stages of plant growth (from May to September). METHODS: A HPTLC-photodensitometry method was developed and validated for quantification of oleuropein, oleacein and echinacoside in plant extracts (aqueous and ethanolic extract, decoction, infusion). Silica gel was used as the stationary phase and dichloromethane:methanol:formic acid:water (80:25:1.5:4, v/v/v/v) as the mobile phase. RESULTS: The HPTLC-photodensitometry method developed for quantification of oleacein, oleuropein and echinacoside was specific, accurate and precise. The presence of oleacein was detected in aqueous extracts, whereas oleuropein was present, in particular, in ethanolic extracts, decoctions and infusions. Echinacoside was detected in all the extracts prepared. The content of secoiridoids was variable from May to September, whereas the amount of echinacoside increased in this term. CONCLUSION: The developed and validated HPTLC-photodensitometry method allowed performing fast screening of quantitative profiles of oleacein, oleuropein and echinacoside in preparations of privet leaves.[Abstract] [Full Text] [Related] [New Search]