These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolism of glutamine in lymphocytes. Author: Brand K, Fekl W, von Hintzenstern J, Langer K, Luppa P, Schoerner C. Journal: Metabolism; 1989 Aug; 38(8 Suppl 1):29-33. PubMed ID: 2569663. Abstract: Pathways of glutamine metabolism in resting and proliferating rat thymocytes and established human T- and B-lymphoblastoid cell lines were evaluated by in vitro incubations of freshly prepared or cultured cells for one to two hours with [U14C]glutamine. Complete recovery of glutamine carbons utilized in products allowed quantification of the pathways of glutamine metabolism under the experimental conditions. Partial oxidation of glutamine via 2-oxoglutarate in a truncated citric acid cycle to CO2 and oxaloacetate, which then was converted to aspartate, accounted for 76% and 69%, respectively, of the glutamine metabolized beyond the stage of glutamate by resting and proliferating thymocytes. Similar results were obtained with the lymphoblastoid T- and B-cell lines. Complete oxidation to CO2 in the citric acid cycle via 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase accounted for only 25% and 7%, respectively. In proliferating cells a substantial amount of glutamine carbons was also recovered in pyruvate, alanine, and especially lactate. The main route of glutamine and glutamate entrance into the citric acid cycle via 2-oxoglutarate in lymphocytes appears to be transamination by aspartate aminotransferase rather than oxidative deamination by glutamate dehydrogenase. In the presence of glucose as a second substrate, glutamine utilization and aspartate formation markedly decreased, but complete oxidation of glutamine carbons to CO2 increased to 37% and 23%, respectively, in resting and proliferating cells. The dipeptide, glycyl-L-glutamine, which is more stable than free glutamine, can substitute for glutamine in thymocyte cultures at higher concentrations.[Abstract] [Full Text] [Related] [New Search]