These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection.
    Author: Shao J, Tong L, Tang S, Guo Z, Zhang H, Li P, Wang H, Du C, Yu XF.
    Journal: ACS Appl Mater Interfaces; 2015 Mar 11; 7(9):5391-9. PubMed ID: 25697378.
    Abstract:
    We report a new paper-based surface enhanced Raman scattering (SERS) substrate platform contributed by a poly(l-lactic acid) (PLLA) nanofibrous paper adsorbed with plasmonic nanostructures, which can circumvent many challenges of the existing SERS substrates. This PLLA nanofibrous paper has three-dimensional porous structure, extremely clean surface with good hydrophobicity (contact angle is as high as 133.4°), and negligible background interference under Raman laser excitation. Due to the strong electrostatic interaction between PLLA nanofiber and cetyltrimethylammonium bromide (CTAB) molecules, the CTAB-coated gold nanorods (GNRs) are efficiently immobilized onto the fibers. Such a hydrophobic paper substrate with locally hydrophilic SERS-active area can confine analyte molecules and prevent the random spreading of molecules. The confinement leads to focusing effect and the GNRs-PLLA SERS substrate is found to be highly sensitive (0.1 nM Rhodamine 6G and malachite green) and exhibit excellent reproducibility (∼8% relative standard deviation (RSD)) and long-term stability. Furthermore, it is also cost-efficient, with simple fabrication methodology, and demonstrates high sample collection efficiency. All of these benefits ensure that this GNRs-PLLA substrate is a really perfect choice for a variety of SERS applications.
    [Abstract] [Full Text] [Related] [New Search]