These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Removal of ammonium-nitrogen from groundwater using a fully passive permeable reactive barrier with oxygen-releasing compound and clinoptilolite.
    Author: Huang G, Liu F, Yang Y, Deng W, Li S, Huang Y, Kong X.
    Journal: J Environ Manage; 2015 May 01; 154():1-7. PubMed ID: 25700350.
    Abstract:
    A novel fully passive permeable reactive barrier (PRB) with oxygen-releasing compound (ORC) and clinoptilolite was proposed for the removal of ammonium-nitrogen from groundwater. The PRB involves a combination of oxygen release, biological nitrification, ion exchange, and bioregeneration. A pilot-scale performance comparison experiment was carried out employing three parallel columns to assess the proposed PRB. The results showed that the PRB achieved nearly complete [Formula: see text] depletion (>99%). [Formula: see text] of 5.23-10.88 mg/L was removed, and [Formula: see text] of <1.93 mg/L and [Formula: see text] of 2.03-19.67 mg/L were generated. Ion exchange and biological nitrification both contributed to [Formula: see text] removal, and the latter played a dominant role under the condition of sufficient oxygen. Biological nitrification favored a delay in sorption saturation and a release of exchange sites. The ORC could sufficiently, efficiently supply oxygen for approximately 120 pore volumes. The clinoptilolite ensured a robust [Formula: see text] removal in case of temporary insufficient biological activities. No external alkalinity sources had to be supplied and no inhibition of aerobic metabolism occurred. The ceramicite had a negligible effect on the biomass growth. Based on the research findings, a full-scale continuous wall PRB was installed in Shenyang, China in 2012.
    [Abstract] [Full Text] [Related] [New Search]