These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Validation during exercise of a new device for cardiac output measurement using pulse wave transit time (comparison EsCCO(®) vs. Physioflow(®))].
    Author: Stalter A, Lanot N, Bridon G, Julian V, Péreira B, Richard R.
    Journal: Ann Cardiol Angeiol (Paris); 2016 Feb; 65(1):1-6. PubMed ID: 25704727.
    Abstract:
    OBJECTIVES: EsCCO is a novel non-invasive continuous cardiac output monitoring system based on pulse wave transit time already validated at rest. The aim of our study was to compare cardiac output measurements obtained simultaneously by EsCCO(®) (Q˙cOP) and impedance cardiography (Physioflow(®) ; Q˙cIMP), in healthy subjects. PATIENTS AND METHODS: Eight healthy subjects (age: 31±9 years, weight: 76±10kg, height: 179±5cm) realized two exercise tests: an incremental ergocycle test performed until exertion (Pmax=269±48W) and a constant load exercise (P=163±27W). Comparison between measurements (Q˙cOP versus Q˙cIMP) obtained during the first test allowed to evaluate the accuracy of the device. Reliability was determined on three repeated measures during the second test, realized at ventilatory threshold. RESULTS: Correlation coefficient between both methods is 0.88 (P<0.01). Mean difference is 0.04±1.49L/min (95 % limits of agreement: +2.94 to -3.00L/min) and only 3/74 measures are not included between the limits of agreement. At high intensity and for cardiac output over than 15 L/min, Q˙cOP signal is lost in almost half the time. Concerning reliability, reproducibility coefficient is 0.87 (P<0.05), only 1.8 % of this variability is due to the method. CONCLUSION: EsCCO(®) measurements are accurate, reliable and allow a good estimation of cardiac output on healthy subjects. The signal lost observed for high cardiac output levels (>15L/min) can limit its utilization during very high intensity exercise.
    [Abstract] [Full Text] [Related] [New Search]