These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracellular Signal-regulated Kinase Mitogen-activated Protein Kinase and Phosphatidylinositol 3-Kinase/Akt Signaling Are Required for Lipopolysaccharide-mediated Mineralization in Murine Odontoblast-like Cells. Author: Wang Z, Ma F, Wang J, Zhou Z, Liu B, He X, Fu L, He W, Cooper PR. Journal: J Endod; 2015 Jun; 41(6):871-6. PubMed ID: 25720983. Abstract: INTRODUCTION: Odontoblasts play an important role in post-developmental control of mineralization in response to external stimuli in the tooth. The present study investigated whether lipopolysaccharide (LPS), a major bacterial cell wall component, influenced mineralization in a murine odontoblast-like cell (OLC) line and the related intracellular signaling pathways involved. METHODS: Alizarin red S staining was used to assess mineralized nodule formation in OLCs in response to LPS. The effects of LPS on gene expression of odontoblastic markers were investigated by using quantitative real-time reverse-transcriptase polymerase chain reaction. The potential involvement of toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), or phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in the mineralized nodule formation, and mRNA expression of several odontoblastic markers of OLCs induced by LPS was assessed by using alizarin red S staining and quantitative real-time reverse-transcriptase polymerase chain reaction. Moreover, LPS stimulation resulted in phosphorylation of protein that was determined by Western blot analysis. RESULTS: OLCs showed reduced mineralized nodule formation and several odontoblastic markers expression in response to LPS exposure. Furthermore, inhibition of TLR4, extracellular signal-regulated kinase (ERK), and PI3K/Akt signaling noticeably antagonized LPS-mediated mineralization in OLCs. However, p38 MAPK, c-Jun N-terminal kinase, and NF-κB signaling inhibitors did not affect LPS-mediated mineralization in OLCs. Notably, LPS treatment resulted in a time-dependent phosphorylation of ERK and PI3K/Akt in OLCs, which was abrogated by their specific inhibitors. CONCLUSIONS: LPS decreased mineralization in OLCs via TLR4, ERK MAPK, and PI3K/Akt signaling pathways, but not p38, c-Jun N-terminal kinase, or NF-κB signaling.[Abstract] [Full Text] [Related] [New Search]