These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of novel Schiff's bases of highly potential biological activities and their structure investigation.
    Author: Zayed EM, Zayed MA.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2015 May 15; 143():81-90. PubMed ID: 25721778.
    Abstract:
    Novel bisaldehyde-hydrazide Schiff's bases AS1 (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde terephthalohydrazide) and AS2 (N',N'″-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))di(benzohydrazide)) were prepared as new macrocyclic compounds via condensation reactions. AS1 had been prepared by condensation between (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde) bisaldehyde and terephthalohydrazide in a ratio1:1. AS2 had been obtained by condensation between (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde) bisaldehyde and benzohydrazide in ratio 1:2. The structures of AS1 and AS2 were characterized by elemental analysis (EA), mass (MS), FT-IR and (1)H-NMR spectra, and thermal analyses (TG, DTG). The activation thermodynamic parameters such as ΔE(∗), ΔH(∗), ΔS(∗) and ΔG(∗) were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bonds responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities had been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillus subtilis and Staphylococcus aurous bacteria in order to assess their anti-microbial potential.
    [Abstract] [Full Text] [Related] [New Search]