These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Self-assembly of patchy colloidal dumbbells.
    Author: Avvisati G, Vissers T, Dijkstra M.
    Journal: J Chem Phys; 2015 Feb 28; 142(8):084905. PubMed ID: 25725755.
    Abstract:
    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter σ1 and one repulsive sphere with diameter σ2 and center-to-center distance d between the spheres. For three different size ratios, we study the self-assembled structures for different separations l = 2d/(σ1 + σ2) between the two spheres. In particular, we focus on structures that can be assembled from the homogeneous fluid, as these might be of interest in experiments. We use cluster order parameters to classify the shape of the formed structures. When the size of the spheres is almost equal, q = σ2/σ1 = 1.035, we find that, upon increasing l, spherical micelles are transformed to elongated micelles and finally to vesicles and bilayers. For size ratio q = 1.25, we observe a continuously tunable transition from spherical to elongated micelles upon increasing the sphere separation. For size ratio q = 0.95, we find bilayers and vesicles, plus faceted polyhedra and liquid droplets. Our results identify key parameters to create colloidal vesicles with attractive dumbbells in experiments.
    [Abstract] [Full Text] [Related] [New Search]