These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mutagenesis of triad determinants of rat Alox15 alters the specificity of fatty acid and phospholipid oxygenation.
    Author: Pekárová M, Kuhn H, Bezáková L, Ufer C, Heydeck D.
    Journal: Arch Biochem Biophys; 2015 Apr 01; 571():50-7. PubMed ID: 25731857.
    Abstract:
    Among lipoxygenases ALOX15 orthologs are somewhat peculiar because of their capability of oxygenating polyenoic fatty acids even if they are incorporated in complex lipid-protein assemblies. ALOX15 orthologs of different species have been characterized before, but little is known about the corresponding rat enzyme. Since rats are frequently employed as models in biomedical research we expressed rat Alox15 as recombinant protein in pro- and eukaryotic expression systems and characterized the enzyme with respect to its enzymatic properties. The enzyme oxygenated free arachidonic acid mainly to 12S-HpETE with 15S-HpETE only contributing 10% to the product mixture. Multiple directed mutagenesis studies indicated applicability of the triad concept with particular importance of Leu353 and Ile593 as specificity determinants. Ala404Gly exchange induced subtle alterations in enantioselectivity suggesting partial applicability of the Coffa/Brash concept. Wildtype rat Alox15 and its 15-lipoxygenating Leu353Phe mutant are capable of oxygenating ester lipids of biomembranes and high-density lipoproteins. For the wildtype enzyme 13S-HODE and 12S-HETE were identified as major oxygenation products but for the Leu353Phe mutant 13S-HODE and 15S-HETE prevailed. These data indicate for the first time that mutagenesis of triad determinants modifies the reaction specificity of ALOX15 orthologs with free fatty acids and complex ester lipids in a similar way.
    [Abstract] [Full Text] [Related] [New Search]