These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serum tests, liver stiffness and artificial neural networks for diagnosing cirrhosis and portal hypertension.
    Author: Procopet B, Cristea VM, Robic MA, Grigorescu M, Agachi PS, Metivier S, Peron JM, Selves J, Stefanescu H, Berzigotti A, Vinel JP, Bureau C.
    Journal: Dig Liver Dis; 2015 May; 47(5):411-6. PubMed ID: 25732434.
    Abstract:
    BACKGROUND: The diagnostic performance of biochemical scores and artificial neural network models for portal hypertension and cirrhosis is not well established. AIMS: To assess diagnostic accuracy of six serum scores, artificial neural networks and liver stiffness measured by transient elastography, for diagnosing cirrhosis, clinically significant portal hypertension and oesophageal varices. METHODS: 202 consecutive compensated patients requiring liver biopsy and hepatic venous pressure gradient measurement were included. Several serum tests (alone and combined into scores) and liver stiffness were measured. Artificial neural networks containing or not liver stiffness as input variable were also created. RESULTS: The best non-invasive method for diagnosing cirrhosis, portal hypertension and oesophageal varices was liver stiffness (C-statistics=0.93, 0.94, and 0.90, respectively). Among serum tests/scores the best for diagnosing cirrhosis and portal hypertension and oesophageal varices were, respectively, Fibrosis-4, and Lok score. Artificial neural networks including liver stiffness had high diagnostic performance for cirrhosis, portal hypertension and oesophageal varices (accuracy>80%), but were not statistically superior to liver stiffness alone. CONCLUSIONS: Liver stiffness was the best non-invasive method to assess the presence of cirrhosis, portal hypertension and oesophageal varices. The use of artificial neural networks integrating different non-invasive tests did not increase the diagnostic accuracy of liver stiffness alone.
    [Abstract] [Full Text] [Related] [New Search]